On the operad of bigraft algebras.
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 2, pp. 543-599.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we study the notion of a bigraft algebra, generalizing the notions of left and right graft algebras. We construct the free bigraft algebra on one generator in terms of certain planar rooted trees with decorated edges, and therefore describe explicitly the bigraft operad. We then compute its Koszul dual and show that the bigraft operad is Koszul. Moreover, we endow the free bigraft algebra on one generator with a universal Hopf algebra structure and a pairing. Finally, we prove an analogue of the Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems. For this, we define the notion of infinitesimal bigraft bialgebras and we prove the existence of a new good triple of operads.
Classification : 16T05, 18D50, 05C05, 16T10, 16T30, 05E15
Keywords: bigraft algebras, planar rooted trees, Koszul quadratic operads, infinitesimal bialgebras
@article{JAC_2014__40_2_a2,
     author = {Mansuy, Anthony},
     title = {On the operad of bigraft algebras.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {543--599},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a2/}
}
TY  - JOUR
AU  - Mansuy, Anthony
TI  - On the operad of bigraft algebras.
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 543
EP  - 599
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a2/
LA  - en
ID  - JAC_2014__40_2_a2
ER  - 
%0 Journal Article
%A Mansuy, Anthony
%T On the operad of bigraft algebras.
%J Journal of Algebraic Combinatorics
%D 2014
%P 543-599
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a2/
%G en
%F JAC_2014__40_2_a2
Mansuy, Anthony. On the operad of bigraft algebras.. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 2, pp. 543-599. http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a2/