Edge-maximality of power graphs of finite cyclic groups
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 2, pp. 313-330.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that among all finite groups of any given order, the cyclic group of that order has the maximum number of edges in its power graph.
Classification : 05C25
Keywords: cyclic group, $p$-group, greatest prime divisor, least prime divisor
@article{JAC_2014__40_2_a10,
     author = {Curtin, Brian and Pourgholi, G.R.},
     title = {Edge-maximality of power graphs of finite cyclic groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {313--330},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a10/}
}
TY  - JOUR
AU  - Curtin, Brian
AU  - Pourgholi, G.R.
TI  - Edge-maximality of power graphs of finite cyclic groups
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 313
EP  - 330
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a10/
LA  - en
ID  - JAC_2014__40_2_a10
ER  - 
%0 Journal Article
%A Curtin, Brian
%A Pourgholi, G.R.
%T Edge-maximality of power graphs of finite cyclic groups
%J Journal of Algebraic Combinatorics
%D 2014
%P 313-330
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a10/
%G en
%F JAC_2014__40_2_a10
Curtin, Brian; Pourgholi, G.R. Edge-maximality of power graphs of finite cyclic groups. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 2, pp. 313-330. http://geodesic.mathdoc.fr/item/JAC_2014__40_2_a10/