Finite polytopes have finite regular covers
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that any finite, abstract $n$-polytope is covered by a finite, abstract regular $n$-polytope.
Classification : 51M20
Keywords: abstract polytopes, regular polytopes, covers, monodromy group
@article{JAC_2014__40_1_a9,
     author = {Monson, B. and Schulte, Egon},
     title = {Finite polytopes have finite regular covers},
     journal = {Journal of Algebraic Combinatorics},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a9/}
}
TY  - JOUR
AU  - Monson, B.
AU  - Schulte, Egon
TI  - Finite polytopes have finite regular covers
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 75
EP  - 82
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a9/
LA  - en
ID  - JAC_2014__40_1_a9
ER  - 
%0 Journal Article
%A Monson, B.
%A Schulte, Egon
%T Finite polytopes have finite regular covers
%J Journal of Algebraic Combinatorics
%D 2014
%P 75-82
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a9/
%G en
%F JAC_2014__40_1_a9
Monson, B.; Schulte, Egon. Finite polytopes have finite regular covers. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a9/