On intransitive graph-restrictive permutation groups
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 179-185.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $\Gamma$ be a finite connected $G$-vertex-transitive graph and let $v$ be a vertex of $\Gamma$. If the permutation group induced by the action of the vertex-stabiliser $G_v$ on the neighbourhood $\Gamma (v)$ is permutation isomorphic to $L$, then $(\Gamma ,G)$ is said to be locally $L$. A permutation group $L$ is graph-restrictive if there exists a constant $c(L)$ such that, for every locally $L$ pair $(\Gamma ,G)$ and a vertex $v$ of $\Gamma$, the inequality $\vert G_v\vert\leq c(L)$ holds. We show that an intransitive group is graph-restrictive if and only if it is semiregular.
Classification : 05E18, 20B25
Keywords: permutation group, semi-regular permutation group, vertex-transitive graph, graph-restrictive permutation group
@article{JAC_2014__40_1_a6,
     author = {Spiga, Pablo and Verret, Gabriel},
     title = {On intransitive graph-restrictive permutation groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a6/}
}
TY  - JOUR
AU  - Spiga, Pablo
AU  - Verret, Gabriel
TI  - On intransitive graph-restrictive permutation groups
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 179
EP  - 185
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a6/
LA  - en
ID  - JAC_2014__40_1_a6
ER  - 
%0 Journal Article
%A Spiga, Pablo
%A Verret, Gabriel
%T On intransitive graph-restrictive permutation groups
%J Journal of Algebraic Combinatorics
%D 2014
%P 179-185
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a6/
%G en
%F JAC_2014__40_1_a6
Spiga, Pablo; Verret, Gabriel. On intransitive graph-restrictive permutation groups. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 179-185. http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a6/