0-Hecke algebra actions on coinvariants and flags
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 245-278.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The 0-Hecke algebra $H_n(0)$ is a deformation of the group algebra of the symmetric group $\mathfrak{S}_n$. We show that its coinvariant algebra naturally carries the regular representation of $H_n(0)$, giving an analogue of the well-known result for $\mathfrak{S}_n$ by Chevalley-Shephard-Todd. By investigating the action of $H_n(0)$ on coinvariants and flag varieties, we interpret the generating functions counting the permutations with fixed inverse descent set by their inversion number and major index. We also study the action of $H_n(0)$ on the cohomology rings of the Springer fibers, and similarly interpret the (non-commutative) Hall-Littlewood symmetric functions indexed by hook shapes.
Classification : 05E15, 20C08, 20B30
Keywords: 0-Hecke algebra, coinvariant algebra, Demazure operator, descent monomial, flag variety, Hall-Littlewood function, Ribbon number, Springer fiber
@article{JAC_2014__40_1_a2,
     author = {Huang, Jia},
     title = {0-Hecke algebra actions on coinvariants and flags},
     journal = {Journal of Algebraic Combinatorics},
     pages = {245--278},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a2/}
}
TY  - JOUR
AU  - Huang, Jia
TI  - 0-Hecke algebra actions on coinvariants and flags
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 245
EP  - 278
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a2/
LA  - en
ID  - JAC_2014__40_1_a2
ER  - 
%0 Journal Article
%A Huang, Jia
%T 0-Hecke algebra actions on coinvariants and flags
%J Journal of Algebraic Combinatorics
%D 2014
%P 245-278
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a2/
%G en
%F JAC_2014__40_1_a2
Huang, Jia. 0-Hecke algebra actions on coinvariants and flags. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 245-278. http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a2/