Markov degree of the Birkhoff model
Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 293-311.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove the conjecture by P. Diaconis and N. Eriksson [J. Symb. Comput. 41, No. 2, 182--195 (2006; Zbl 1120.62002)] that the Markov degree of the Birkhoff model is three. In fact, we prove the conjecture in a generalization of the Birkhoff model, where each voter is asked to rank a fixed number, say $r$, of candidates among all candidates.
Classification : 62F07, 13P25, 62B05
Keywords: algebraic statistics, Markov basis, normality of semigroup, ranking model
@article{JAC_2014__40_1_a0,
     author = {Yamaguchi, Takashi and Ogawa, Mitsunori and Takemura, Akimichi},
     title = {Markov degree of the {Birkhoff} model},
     journal = {Journal of Algebraic Combinatorics},
     pages = {293--311},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a0/}
}
TY  - JOUR
AU  - Yamaguchi, Takashi
AU  - Ogawa, Mitsunori
AU  - Takemura, Akimichi
TI  - Markov degree of the Birkhoff model
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 293
EP  - 311
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a0/
LA  - en
ID  - JAC_2014__40_1_a0
ER  - 
%0 Journal Article
%A Yamaguchi, Takashi
%A Ogawa, Mitsunori
%A Takemura, Akimichi
%T Markov degree of the Birkhoff model
%J Journal of Algebraic Combinatorics
%D 2014
%P 293-311
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a0/
%G en
%F JAC_2014__40_1_a0
Yamaguchi, Takashi; Ogawa, Mitsunori; Takemura, Akimichi. Markov degree of the Birkhoff model. Journal of Algebraic Combinatorics, Tome 40 (2014) no. 1, pp. 293-311. http://geodesic.mathdoc.fr/item/JAC_2014__40_1_a0/