Combinatorics of certain higher $q, t$-Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 749-781.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The higher $q, t$-Catalan polynomial $C^{(m)}_{n}(q,t)$ can be defined combinatorially as a weighted sum of lattice paths contained in certain triangles, or algebraically as a complicated sum of rational functions indexed by partitions of $n$. This paper proves the equivalence of the two definitions for all $m\geq 1$ and all $n\leq 4$. We also give a bijective proof of the joint symmetry property $C^{(m)}_{n}(q,t)=C^{(m)}_{n}(t,q)$ for all $m\geq 1$ and all $n\leq 4$. The proof is based on a general approach for proving joint symmetry that dissects a collection of objects into chains, and then passes from a joint symmetry property of initial points and terminal points to joint symmetry of the full set of objects. Further consequences include unimodality results and specific formulas for the coefficients in $C^{(m)}_{n}(q,t)$ for all $m\geq 1$ and all $n\leq 4$. We give analogous results for certain rational-slope $q, t$-Catalan polynomials.
Classification : 05A10, 05A15, 05E05
Keywords: $q, t$-Catalan polynomials, joint symmetry, lattice paths
@article{JAC_2014__39_4_a9,
     author = {Lee, Kyungyong and Li, Li and Loehr, Nicholas A.},
     title = {Combinatorics of certain higher $q, t${-Catalan} polynomials: chains, joint symmetry, and the {Garsia-Haiman} formula},
     journal = {Journal of Algebraic Combinatorics},
     pages = {749--781},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a9/}
}
TY  - JOUR
AU  - Lee, Kyungyong
AU  - Li, Li
AU  - Loehr, Nicholas A.
TI  - Combinatorics of certain higher $q, t$-Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 749
EP  - 781
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a9/
LA  - en
ID  - JAC_2014__39_4_a9
ER  - 
%0 Journal Article
%A Lee, Kyungyong
%A Li, Li
%A Loehr, Nicholas A.
%T Combinatorics of certain higher $q, t$-Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula
%J Journal of Algebraic Combinatorics
%D 2014
%P 749-781
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a9/
%G en
%F JAC_2014__39_4_a9
Lee, Kyungyong; Li, Li; Loehr, Nicholas A. Combinatorics of certain higher $q, t$-Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 749-781. http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a9/