2-arc-transitive cyclic covers of $K_{n,n}-nK_2$
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 883-902.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The second author et al. [J. Comb. Theory, Ser. B 74, No. 2, 276--290 (1998; Zbl 1026.05057); ibid. 93, No. 1, 73--93 (2005; Zbl 1063.05066)], classified regular covers of complete graph whose fiber-preserving automorphism group acts 2-arc-transitively, and whose covering transformation group is either cyclic or isomorphic to $\mathbb Z_p^2$ or $\mathbb{Z}_p^3$ with $p$ a prime. In this paper, a complete classification is achieved of all the regular covers of bipartite complete graphs minus a matching $K_{n,n}-nK_2$ with cyclic covering transformation groups, whose fiber-preserving automorphism groups act 2-arc-transitively.
Classification : 05C60, 05C25
Keywords: arc-transitive graph, covering graph, lifting, 2-transitive group, linear group
@article{JAC_2014__39_4_a4,
     author = {Xu, Wenqin and Du, Shaofei},
     title = {2-arc-transitive cyclic covers of $K_{n,n}-nK_2$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {883--902},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a4/}
}
TY  - JOUR
AU  - Xu, Wenqin
AU  - Du, Shaofei
TI  - 2-arc-transitive cyclic covers of $K_{n,n}-nK_2$
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 883
EP  - 902
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a4/
LA  - en
ID  - JAC_2014__39_4_a4
ER  - 
%0 Journal Article
%A Xu, Wenqin
%A Du, Shaofei
%T 2-arc-transitive cyclic covers of $K_{n,n}-nK_2$
%J Journal of Algebraic Combinatorics
%D 2014
%P 883-902
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a4/
%G en
%F JAC_2014__39_4_a4
Xu, Wenqin; Du, Shaofei. 2-arc-transitive cyclic covers of $K_{n,n}-nK_2$. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 883-902. http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a4/