On normal 2-geodesic transitive Cayley graphs
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 903-918.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We investigate connected normal 2-geodesic transitive Cayley graphs $\mathrm{Cay}(T,S)$. We first prove that if $\mathrm{Cay}(T,S)$ is neither cyclic nor $K_{4\vert 2\vert}$, then $\langle a\rangle\backslash\{1\}\subsetneq S$ for all $a \in S$. Next, as an application, we give a reduction theorem proving that each graph in this family which is neither a complete multipartite graph nor a bipartite 2-arc transitive graph, has a normal quotient that is either a complete graph or a Cayley graph in the family for a characteristically simple group. Finally we classify complete multipartite graphs in the family.
Classification : 05C25
Keywords: Cayley graph, normal 2-geodesic transitivity
@article{JAC_2014__39_4_a3,
     author = {Devillers, Alice and Jin, Wei and Li, Cai Heng and Praeger, Cheryl E.},
     title = {On normal 2-geodesic transitive {Cayley} graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {903--918},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a3/}
}
TY  - JOUR
AU  - Devillers, Alice
AU  - Jin, Wei
AU  - Li, Cai Heng
AU  - Praeger, Cheryl E.
TI  - On normal 2-geodesic transitive Cayley graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 903
EP  - 918
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a3/
LA  - en
ID  - JAC_2014__39_4_a3
ER  - 
%0 Journal Article
%A Devillers, Alice
%A Jin, Wei
%A Li, Cai Heng
%A Praeger, Cheryl E.
%T On normal 2-geodesic transitive Cayley graphs
%J Journal of Algebraic Combinatorics
%D 2014
%P 903-918
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a3/
%G en
%F JAC_2014__39_4_a3
Devillers, Alice; Jin, Wei; Li, Cai Heng; Praeger, Cheryl E. On normal 2-geodesic transitive Cayley graphs. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 903-918. http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a3/