3-nets realizing a group in a projective plane
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 939-966.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In a projective plane $PG(2,\mathbb K)$ defined over an algebraically closed field $\mathbb K$ of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614-1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672-688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. Urzúa's 3-nets (Adv. Geom. 10:287-310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If $p$ is larger than the order of the group, the above classification holds in characteristic $p>0$ apart from three possible exceptions $\mathrm{Alt}_4$, $\mathrm{Sym}_4$, and $\mathrm{Alt}_5$. Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069-1088, 2007; Miguel and Buzunáriz in Graphs Comb. 25:469-488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672-688, 2008; Yuzvinsky in Compos. Math. 140:1614-1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641-1648, 2009).
Classification : 51E20
Keywords: 3-net, dual 3-net, projective plane, embedding, cubic curve
@article{JAC_2014__39_4_a1,
     author = {Korchm\'aros, G\'abor and Nagy, G\'abor P. and Pace, Nicola},
     title = {3-nets realizing a group in a projective plane},
     journal = {Journal of Algebraic Combinatorics},
     pages = {939--966},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a1/}
}
TY  - JOUR
AU  - Korchmáros, Gábor
AU  - Nagy, Gábor P.
AU  - Pace, Nicola
TI  - 3-nets realizing a group in a projective plane
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 939
EP  - 966
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a1/
LA  - en
ID  - JAC_2014__39_4_a1
ER  - 
%0 Journal Article
%A Korchmáros, Gábor
%A Nagy, Gábor P.
%A Pace, Nicola
%T 3-nets realizing a group in a projective plane
%J Journal of Algebraic Combinatorics
%D 2014
%P 939-966
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a1/
%G en
%F JAC_2014__39_4_a1
Korchmáros, Gábor; Nagy, Gábor P.; Pace, Nicola. 3-nets realizing a group in a projective plane. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 939-966. http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a1/