A construction for infinite families of semisymmetric graphs revealing their full automorphism group
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 967-988.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We give a general construction leading to different non-isomorphic families $\varGamma_{n,q}(\mathcal{K})$ of connected $q$-regular semisymmetric graphs of order $2q^{n+1}$ embedded in $\operatorname{PG}(n+1,q)$, for a prime power $q=p^{h}$, using the linear representation of a particular point set $\mathcal{K}$ of size $q$ contained in a hyperplane of $\operatorname{PG}(n+1,q)$. We show that, when $\mathcal{K}$ is a normal rational curve with one point removed, the graphs $\varGamma_{n,q}(\mathcal{K})$ are isomorphic to the graphs constructed for $q=p^{h}$ in [F. Lazebnik and R. Viglione [J. Graph Theory 41, No. 4, 249--258 (2002; Zbl 1012.05083)] and to the graphs constructed for $q$ prime in [S. Du et al., Eur. J. Comb. 24, No. 7, 897--902 (2003; Zbl 1026.05056)]. These graphs were known to be semisymmetric but their full automorphism group was up to now unknown. For $q\geq n+3$ or $q=p=n+2$, $n\geq 2$, we obtain their full automorphism group from our construction by showing that, for an arc $\mathcal{K}$, every automorphism of $\varGamma_{n,q}(\mathcal{K})$ is induced by a collineation of the ambient space $\operatorname{PG}(n+1,q)$. We also give some other examples of semisymmetric graphs $\varGamma _{n,q}(\mathcal{K})$ for which not every automorphism is induced by a collineation of their ambient space.
Classification : 05C62, 05C60, 05C75
Keywords: semisymmetric graph, linear representation, automorphism group, arc, normal rational curve
@article{JAC_2014__39_4_a0,
     author = {Cara, Philippe and Rottey, Sara and Van de Voorde, Geertrui},
     title = {A construction for infinite families of semisymmetric graphs revealing their full automorphism group},
     journal = {Journal of Algebraic Combinatorics},
     pages = {967--988},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a0/}
}
TY  - JOUR
AU  - Cara, Philippe
AU  - Rottey, Sara
AU  - Van de Voorde, Geertrui
TI  - A construction for infinite families of semisymmetric graphs revealing their full automorphism group
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 967
EP  - 988
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a0/
LA  - en
ID  - JAC_2014__39_4_a0
ER  - 
%0 Journal Article
%A Cara, Philippe
%A Rottey, Sara
%A Van de Voorde, Geertrui
%T A construction for infinite families of semisymmetric graphs revealing their full automorphism group
%J Journal of Algebraic Combinatorics
%D 2014
%P 967-988
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a0/
%G en
%F JAC_2014__39_4_a0
Cara, Philippe; Rottey, Sara; Van de Voorde, Geertrui. A construction for infinite families of semisymmetric graphs revealing their full automorphism group. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 4, pp. 967-988. http://geodesic.mathdoc.fr/item/JAC_2014__39_4_a0/