Root polytopes and abelian ideals
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 3, pp. 607-645.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study the root polytope $\mathcal{P}_\varPhi$ of a finite irreducible crystallographic root system $\varPhi$ using its relation with the abelian ideals of a Borel subalgebra of a simple Lie algebra with root system $\varPhi$. We determine the hyperplane arrangement corresponding to the faces of codimension 2 of $\mathcal{P}_\varPhi$ and analyze its relation with the facets of $\mathcal{P}_\varPhi$. For $\varPhi$ of type $A_n$ or $C_n$, we show that the orbits of some special subsets of abelian ideals under the action of the Weyl group parametrize a triangulation of $\mathcal{P}_\varPhi$. We show that this triangulation restricts to a triangulation of the positive root polytope $\mathcal{P}_\varPhi^+$.
Classification : 05E10, 05E15, 52C07
Keywords: root system, root polytope, Weyl group, Borel subalgebra, abelian ideal
@article{JAC_2014__39_3_a7,
     author = {Cellini, Paola and Marietti, Mario},
     title = {Root polytopes and abelian ideals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {607--645},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a7/}
}
TY  - JOUR
AU  - Cellini, Paola
AU  - Marietti, Mario
TI  - Root polytopes and abelian ideals
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 607
EP  - 645
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a7/
LA  - en
ID  - JAC_2014__39_3_a7
ER  - 
%0 Journal Article
%A Cellini, Paola
%A Marietti, Mario
%T Root polytopes and abelian ideals
%J Journal of Algebraic Combinatorics
%D 2014
%P 607-645
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a7/
%G en
%F JAC_2014__39_3_a7
Cellini, Paola; Marietti, Mario. Root polytopes and abelian ideals. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 3, pp. 607-645. http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a7/