Betti tables of $p$-Borel-fixed ideals
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 3, pp. 711-718.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this note we provide a counterexample to a conjecture of Pardue (Thesis (Ph.D.), Brandeis University, 1994), which asserts that if a monomial ideal is $p$-Borel-fixed, then its $\mathbb N$-graded Betti table, after passing to any field, does not depend on the field. More precisely, we show that, for any monomial ideal $I$ in a polynomial ring $S$ over the ring $\mathbb Z$ of integers and for any prime number $p$, there is a $p$-Borel-fixed monomial $S$-ideal $J$ such that a region of the multigraded Betti table of $J(S\otimes_{\mathbb{Z}}\ell)$ is in one-to-one correspondence with the multigraded Betti table of $I(S\otimes_{\mathbb{Z}}\ell)$ for all fields $\ell$ of arbitrary characteristic. There is no analogous statement for Borel-fixed ideals in characteristic zero. Additionally, the construction also shows that there are $p$-Borel-fixed ideals with noncellular minimal resolutions.
Classification : 13D02, 13F20
Keywords: Borel-fixed ideals, graded free resolutions, cellular resolutions
@article{JAC_2014__39_3_a2,
     author = {Caviglia, Giulio and Kummini, Manoj},
     title = {Betti tables of $p${-Borel-fixed} ideals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {711--718},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a2/}
}
TY  - JOUR
AU  - Caviglia, Giulio
AU  - Kummini, Manoj
TI  - Betti tables of $p$-Borel-fixed ideals
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 711
EP  - 718
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a2/
LA  - en
ID  - JAC_2014__39_3_a2
ER  - 
%0 Journal Article
%A Caviglia, Giulio
%A Kummini, Manoj
%T Betti tables of $p$-Borel-fixed ideals
%J Journal of Algebraic Combinatorics
%D 2014
%P 711-718
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a2/
%G en
%F JAC_2014__39_3_a2
Caviglia, Giulio; Kummini, Manoj. Betti tables of $p$-Borel-fixed ideals. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 3, pp. 711-718. http://geodesic.mathdoc.fr/item/JAC_2014__39_3_a2/