Cyclic symmetry of the scaled simplex
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 2, pp. 225-246.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $\mathcal{Z}_{m}^{k}$ consist of the $m^{k}$ alcoves contained in the $m$-fold dilation of the fundamental alcove of the type $A_{k}$ affine hyperplane arrangement. As the fundamental alcove has a cyclic symmetry of order $k+1$, so does $\mathcal{Z}_{m}^{k}$. By bijectively exchanging the natural poset structure of $\mathcal{Z}_{m}^{k}$ for a natural cyclic action on a set of words, we prove that $(\mathcal{Z}_{m}^{k},\prod_{i=1}^{k} \frac{1-q^{mi}}{1-q^{i}},C_{k+1})$ exhibits the cyclic sieving phenomenon.
Classification : 05E05, 20C30, 05A10
Keywords: cyclic sieving phenomenon, affine permutations, type A alcove, core, abacus, Young's lattice
@article{JAC_2014__39_2_a9,
     author = {Thomas, Hugh and Williams, Nathan},
     title = {Cyclic symmetry of the scaled simplex},
     journal = {Journal of Algebraic Combinatorics},
     pages = {225--246},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_2_a9/}
}
TY  - JOUR
AU  - Thomas, Hugh
AU  - Williams, Nathan
TI  - Cyclic symmetry of the scaled simplex
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 225
EP  - 246
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_2_a9/
LA  - en
ID  - JAC_2014__39_2_a9
ER  - 
%0 Journal Article
%A Thomas, Hugh
%A Williams, Nathan
%T Cyclic symmetry of the scaled simplex
%J Journal of Algebraic Combinatorics
%D 2014
%P 225-246
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_2_a9/
%G en
%F JAC_2014__39_2_a9
Thomas, Hugh; Williams, Nathan. Cyclic symmetry of the scaled simplex. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 2, pp. 225-246. http://geodesic.mathdoc.fr/item/JAC_2014__39_2_a9/