Subword complexes, cluster complexes, and generalized multi-associahedra
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 17-51.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we use subword complexes to provide a uniform approach to finite-type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer $k$, a spherical subword complex called multi-cluster complex. For $k=1$, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types $A$ and $B$ coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations, respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.
Classification : 05E15, 52B11, 20F55, 52B45
Keywords: subword complex, cluster complex, generalized associahedron, multi-triangulation, Auslander-Reiten quiver, Coxeter-Catalan combinatorics
@article{JAC_2014__39_1_a8,
     author = {Ceballos, Cesar and Labb\'e, Jean-Philippe and Stump, Christian},
     title = {Subword complexes, cluster complexes, and generalized multi-associahedra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {17--51},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a8/}
}
TY  - JOUR
AU  - Ceballos, Cesar
AU  - Labbé, Jean-Philippe
AU  - Stump, Christian
TI  - Subword complexes, cluster complexes, and generalized multi-associahedra
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 17
EP  - 51
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a8/
LA  - en
ID  - JAC_2014__39_1_a8
ER  - 
%0 Journal Article
%A Ceballos, Cesar
%A Labbé, Jean-Philippe
%A Stump, Christian
%T Subword complexes, cluster complexes, and generalized multi-associahedra
%J Journal of Algebraic Combinatorics
%D 2014
%P 17-51
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a8/
%G en
%F JAC_2014__39_1_a8
Ceballos, Cesar; Labbé, Jean-Philippe; Stump, Christian. Subword complexes, cluster complexes, and generalized multi-associahedra. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 17-51. http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a8/