On stretching the interval simplex-permutohedron
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 99-125.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A family of polytopes introduced by E.M. Feichtner, A. Postnikov, and B. Sturmfels, which were named nestohedra, consists in each dimension of an interval of polytopes starting with a simplex and ending with a permutohedron. This paper investigates a problem of changing and extending the boundaries of these intervals. An iterative application of Feichtner-Kozlov procedure of forming complexes of nested sets is a solution of this problem. By using a simple algebraic presentation of members of nested sets it is possible to avoid the problem of increasing the complexity of the structure of nested curly braces in elements of the produced simplicial complexes.
Classification : 52B11, 52C45
Keywords: building set, nested set, hypergraph, simple polytope, truncation, stellar subdivision, combinatorial blowup, simplex, associahedron, cyclohedron, permutohedron
@article{JAC_2014__39_1_a5,
     author = {Petri\'c, Zoran},
     title = {On stretching the interval simplex-permutohedron},
     journal = {Journal of Algebraic Combinatorics},
     pages = {99--125},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a5/}
}
TY  - JOUR
AU  - Petrić, Zoran
TI  - On stretching the interval simplex-permutohedron
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 99
EP  - 125
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a5/
LA  - en
ID  - JAC_2014__39_1_a5
ER  - 
%0 Journal Article
%A Petrić, Zoran
%T On stretching the interval simplex-permutohedron
%J Journal of Algebraic Combinatorics
%D 2014
%P 99-125
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a5/
%G en
%F JAC_2014__39_1_a5
Petrić, Zoran. On stretching the interval simplex-permutohedron. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 99-125. http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a5/