On the evaluation at $( - \iota ,\iota )$ of the Tutte polynomial of a binary matroid
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 141-152.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Vertigan has shown that if $M$ is a binary matroid, then $|T _{M }( - \iota ,\iota )|$, the modulus of the Tutte polynomial of $M$ as evaluated in $( - \iota ,\iota )$, can be expressed in terms of the bicycle dimension of $M$. In this paper, we describe how the argument of the complex number $T _{M }( - \iota ,\iota )$ depends on a certain $\mathbb{Z}/4\mathbb {Z}$-valued quadratic form that is canonically associated with $M$. We show how to evaluate $T _{M }( - \iota ,\iota )$ in polynomial time, as well as the canonical tripartition of $M$ and further related invariants.
Classification : 05B35, 05C31, 68Q17
Keywords: matroid, Tutte polynomial, computational complexity
@article{JAC_2014__39_1_a3,
     author = {Pendavingh, R.A.},
     title = {On the evaluation at $( - \iota ,\iota )$ of the {Tutte} polynomial of a binary matroid},
     journal = {Journal of Algebraic Combinatorics},
     pages = {141--152},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a3/}
}
TY  - JOUR
AU  - Pendavingh, R.A.
TI  - On the evaluation at $( - \iota ,\iota )$ of the Tutte polynomial of a binary matroid
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 141
EP  - 152
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a3/
LA  - en
ID  - JAC_2014__39_1_a3
ER  - 
%0 Journal Article
%A Pendavingh, R.A.
%T On the evaluation at $( - \iota ,\iota )$ of the Tutte polynomial of a binary matroid
%J Journal of Algebraic Combinatorics
%D 2014
%P 141-152
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a3/
%G en
%F JAC_2014__39_1_a3
Pendavingh, R.A. On the evaluation at $( - \iota ,\iota )$ of the Tutte polynomial of a binary matroid. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 141-152. http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a3/