Critical groups of graphs with reflective symmetry
Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 209-224.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The critical group of a graph is a finite Abelian group whose order is the number of spanning forests of the graph. For a graph $G$ with a certain reflective symmetry, we generalize a result of Ciucu-Yan-Zhang factorizing the spanning tree number of $G$ by interpreting this as a result about the critical group of $G$. Our result takes the form of an exact sequence, and explicit connections to bicycle spaces are made.
Classification : 05C25, 05C10, 05C62
Keywords: critical group, graph Laplacian, spanning trees, graph involution, bicycle space, involution
@article{JAC_2014__39_1_a0,
     author = {Berget, Andrew},
     title = {Critical groups of graphs with reflective symmetry},
     journal = {Journal of Algebraic Combinatorics},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a0/}
}
TY  - JOUR
AU  - Berget, Andrew
TI  - Critical groups of graphs with reflective symmetry
JO  - Journal of Algebraic Combinatorics
PY  - 2014
SP  - 209
EP  - 224
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a0/
LA  - en
ID  - JAC_2014__39_1_a0
ER  - 
%0 Journal Article
%A Berget, Andrew
%T Critical groups of graphs with reflective symmetry
%J Journal of Algebraic Combinatorics
%D 2014
%P 209-224
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a0/
%G en
%F JAC_2014__39_1_a0
Berget, Andrew. Critical groups of graphs with reflective symmetry. Journal of Algebraic Combinatorics, Tome 39 (2014) no. 1, pp. 209-224. http://geodesic.mathdoc.fr/item/JAC_2014__39_1_a0/