Grassmann and Weyl embeddings of orthogonal Grassmannians
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 863-888.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Given a non-singular quadratic form $q$ of maximal Witt index on $V := V(2n+1,\mathbb{F})$, let $\varDelta $ be the building of type $B _{n }$ formed by the subspaces of $V$ totally singular for $q$ and, for $1\leq k\leq n$, let $\varDelta _{k }$ be the $k$-grassmannian of $\varDelta $. Let $\varepsilon _{k }$ be the embedding of $\varDelta _{k }$ into PG$(\bigwedge^{k } V)$ mapping every point $\langle v _{1},v _{2},\dots ,v _{k }\rangle $ of $\varDelta _{k }$ to the point $\langle v _{1}\land v _{2}\land \dots \land v _{k }\rangle $ of PG$(\bigwedge^{k } V)$. It is known that if char$(\mathbb{F})\neq2$ then dim$(\varepsilon_{k})={{2n+1}\choose k}$. In this paper we give a new very easy proof of this fact. We also prove that if char$(\mathbb{F}) = 2$ then dim$(\varepsilon_{k})={{2n+1}\choose k}-{{2n+1}\choose{k-2}}$. As a consequence, when $1$ and char$(\mathbb{F}) = 2$ the embedding $\varepsilon _{k }$ is not universal. Finally, we prove that if $\mathbb{F}$ is a perfect field of characteristic $p>2$ or a number field, $n>k$ and $k=2$ or 3, then $\varepsilon _{k }$ is universal.
Classification : 14M15, 51A50, 51A45, 51E24, 51M35
Keywords: orthogonal Grassmannian, Grassmann embedding, Weyl embedding, universal embedding
@article{JAC_2013__38_4_a6,
     author = {Cardinali, Ilaria and Pasini, Antonio},
     title = {Grassmann and {Weyl} embeddings of orthogonal {Grassmannians}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {863--888},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a6/}
}
TY  - JOUR
AU  - Cardinali, Ilaria
AU  - Pasini, Antonio
TI  - Grassmann and Weyl embeddings of orthogonal Grassmannians
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 863
EP  - 888
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a6/
LA  - en
ID  - JAC_2013__38_4_a6
ER  - 
%0 Journal Article
%A Cardinali, Ilaria
%A Pasini, Antonio
%T Grassmann and Weyl embeddings of orthogonal Grassmannians
%J Journal of Algebraic Combinatorics
%D 2013
%P 863-888
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a6/
%G en
%F JAC_2013__38_4_a6
Cardinali, Ilaria; Pasini, Antonio. Grassmann and Weyl embeddings of orthogonal Grassmannians. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 863-888. http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a6/