Combinatorial Hopf algebra of superclass functions of type $D$.
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 767-783.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We provide a Hopf algebra structure on the space of superclass functions on the unipotent upper triangular group of type $D$ over a finite field based on a supercharacter theory constructed by André and Neto in J. Algebra 305, 394--429 (2006) and 322 (2009). Also, we make further comments with respect to types $B$ and $C$. Type $A$ was explored by M. Aguiar et al. in Adv. Math. 229 (2012); thus this paper is a contribution to understand combinatorially the supercharacter theory of the other classical Lie types.
Classification : 16T30, 05E10, 20G05, 20G40
Keywords: supercharacters, set partitions of type $D$, Hopf algebras, unipotent upper triangular matrix groups
@article{JAC_2013__38_4_a11,
     author = {Benedetti, Carolina},
     title = {Combinatorial {Hopf} algebra of superclass functions of type $D$.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {767--783},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a11/}
}
TY  - JOUR
AU  - Benedetti, Carolina
TI  - Combinatorial Hopf algebra of superclass functions of type $D$.
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 767
EP  - 783
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a11/
LA  - en
ID  - JAC_2013__38_4_a11
ER  - 
%0 Journal Article
%A Benedetti, Carolina
%T Combinatorial Hopf algebra of superclass functions of type $D$.
%J Journal of Algebraic Combinatorics
%D 2013
%P 767-783
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a11/
%G en
%F JAC_2013__38_4_a11
Benedetti, Carolina. Combinatorial Hopf algebra of superclass functions of type $D$.. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 767-783. http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a11/