Orbit-equivalent infinite permutation groups.
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 973-988.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G,H$ be closed permutation groups on an infinite set $X$, with $H$ a subgroup of $G$. It is shown that if $G$ and $H$ are $orbit$-$equivalent$, that is, have the same orbits on the collection of finite subsets of $X$, and $G$ is primitive but not 2-transitive, then $G=H$.
Classification : 20B07, 20B15, 20B27, 20B35
Keywords: orbit-equivalent permutation groups, closed permutation groups, primitive permutation groups, topologies on symmetric groups
@article{JAC_2013__38_4_a1,
     author = {Lockett, D.C. and Macpherson, H.D.},
     title = {Orbit-equivalent infinite permutation groups.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {973--988},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a1/}
}
TY  - JOUR
AU  - Lockett, D.C.
AU  - Macpherson, H.D.
TI  - Orbit-equivalent infinite permutation groups.
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 973
EP  - 988
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a1/
LA  - en
ID  - JAC_2013__38_4_a1
ER  - 
%0 Journal Article
%A Lockett, D.C.
%A Macpherson, H.D.
%T Orbit-equivalent infinite permutation groups.
%J Journal of Algebraic Combinatorics
%D 2013
%P 973-988
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a1/
%G en
%F JAC_2013__38_4_a1
Lockett, D.C.; Macpherson, H.D. Orbit-equivalent infinite permutation groups.. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 973-988. http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a1/