Broken circuit complexes and hyperplane arrangements
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 989-1016.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study Stanley-Reisner ideals of broken circuit complexes and characterize those ones admitting linear resolutions or being complete intersections. These results will then be used to characterize hyperplane arrangements whose Orlik-Terao ideal has the same properties. As an application, we improve a result of Wilf on upper bounds for the coefficients of the chromatic polynomial of a maximal planar graph. We also show that for a matroid with a complete intersection broken circuit complex, the supersolvability of the matroid is equivalent to the Koszulness of its Orlik-Solomon algebra.
Classification : 52C35, 13C40, 05B35
Keywords: broken circuit complex, complete intersection, hyperplane arrangement, matroid, Orlik-Terao algebra, resolution
@article{JAC_2013__38_4_a0,
     author = {Van Le, Dinh and R\"omer, Tim},
     title = {Broken circuit complexes and hyperplane arrangements},
     journal = {Journal of Algebraic Combinatorics},
     pages = {989--1016},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a0/}
}
TY  - JOUR
AU  - Van Le, Dinh
AU  - Römer, Tim
TI  - Broken circuit complexes and hyperplane arrangements
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 989
EP  - 1016
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a0/
LA  - en
ID  - JAC_2013__38_4_a0
ER  - 
%0 Journal Article
%A Van Le, Dinh
%A Römer, Tim
%T Broken circuit complexes and hyperplane arrangements
%J Journal of Algebraic Combinatorics
%D 2013
%P 989-1016
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a0/
%G en
%F JAC_2013__38_4_a0
Van Le, Dinh; Römer, Tim. Broken circuit complexes and hyperplane arrangements. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 4, pp. 989-1016. http://geodesic.mathdoc.fr/item/JAC_2013__38_4_a0/