On the complete cd-index of a Bruhat interval
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 527-541.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the non-negativity conjecture of the complete cd-index of a Bruhat interval as defined by Billera and Brenti. For each cd-monomial M we construct a set of paths, such that if a "flip condition" is satisfied, then the number of these paths is the coefficient of the monomial M in the complete cd-index. When the monomial contains at most one d, then the condition follows from Dyer's proof of Cellini's conjecture. Hence the coefficients of these monomials are non-negative. We also relate the flip condition to shelling of Bruhat intervals.
Keywords: complete cd-index, Coxeter groups, Bruhat order, shelling
@article{JAC_2013__38_3_a9,
     author = {Karu, Kalle},
     title = {On the complete cd-index of a {Bruhat} interval},
     journal = {Journal of Algebraic Combinatorics},
     pages = {527--541},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a9/}
}
TY  - JOUR
AU  - Karu, Kalle
TI  - On the complete cd-index of a Bruhat interval
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 527
EP  - 541
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a9/
LA  - en
ID  - JAC_2013__38_3_a9
ER  - 
%0 Journal Article
%A Karu, Kalle
%T On the complete cd-index of a Bruhat interval
%J Journal of Algebraic Combinatorics
%D 2013
%P 527-541
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a9/
%G en
%F JAC_2013__38_3_a9
Karu, Kalle. On the complete cd-index of a Bruhat interval. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 527-541. http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a9/