Shortest path poset of Bruhat intervals
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 585-596.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define the shortest path poset $SP(u,v)$ of a Bruhat interval [u,v], by considering the shortest u-v paths in the Bruhat graph of a Coxeter group W, where u,v$\in W$. We consider the case of $SP(u,v)$ having a unique rising chain under a reflection order and show that in this case $SP(u,v)$ is a $Gorenstein^{\ast }$ poset. This allows us to derive the nonnegativity of certain coefficients of the complete cd-index. We furthermore show that the shortest path poset of an irreducible, finite Coxeter group exhibits a symmetric chain decomposition.
Keywords: shortest paths, Bruhat graph, Bruhat order, $\widetilde{R}$ -polynomials, complete cd-index
@article{JAC_2013__38_3_a6,
     author = {Blanco, Sa\'ul A.},
     title = {Shortest path poset of {Bruhat} intervals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {585--596},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a6/}
}
TY  - JOUR
AU  - Blanco, Saúl A.
TI  - Shortest path poset of Bruhat intervals
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 585
EP  - 596
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a6/
LA  - en
ID  - JAC_2013__38_3_a6
ER  - 
%0 Journal Article
%A Blanco, Saúl A.
%T Shortest path poset of Bruhat intervals
%J Journal of Algebraic Combinatorics
%D 2013
%P 585-596
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a6/
%G en
%F JAC_2013__38_3_a6
Blanco, Saúl A. Shortest path poset of Bruhat intervals. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 585-596. http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a6/