The eigenvalue method for cross $t$-intersecting families
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 653-662.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the Erdős-Ko-Rado inequality for t-intersecting families of k-element subsets of an n-element set can be easily extended to an inequality for cross t-intersecting families by using the eigenvalue method if n is relatively large depending on k and t. The same method applies to the case of t-intersecting families of k-dimensional subspaces of an n-dimensional vector space over a finite field.
Keywords: cross intersecting family, eigenvalue method, hoffman-delsarte bound
@article{JAC_2013__38_3_a3,
     author = {Tokushige, Norihide},
     title = {The eigenvalue method for cross $t$-intersecting families},
     journal = {Journal of Algebraic Combinatorics},
     pages = {653--662},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a3/}
}
TY  - JOUR
AU  - Tokushige, Norihide
TI  - The eigenvalue method for cross $t$-intersecting families
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 653
EP  - 662
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a3/
LA  - en
ID  - JAC_2013__38_3_a3
ER  - 
%0 Journal Article
%A Tokushige, Norihide
%T The eigenvalue method for cross $t$-intersecting families
%J Journal of Algebraic Combinatorics
%D 2013
%P 653-662
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a3/
%G en
%F JAC_2013__38_3_a3
Tokushige, Norihide. The eigenvalue method for cross $t$-intersecting families. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 653-662. http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a3/