Skew Pieri rules for Hall-Littlewood functions
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 499-518.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We produce skew Pieri rules for Hall-Littlewood functions in the spirit of Assaf and McNamara (J. Comb. Theory Ser. A $118(1)$:277-290, 2011). The first two were conjectured by the first author (Konvalinka in J. Algebraic Comb. $35(4)$:519-545, 2012). The key ingredients in the proofs are a q-binomial identity for skew partitions and a Hopf algebraic identity that expands products of skew elements in terms of the coproduct and the antipode.
Keywords: Pieri rules, Hall-Littlewood functions
@article{JAC_2013__38_3_a11,
     author = {Konvalinka, Matja\v{z} and Lauve, Aaron},
     title = {Skew {Pieri} rules for {Hall-Littlewood} functions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {499--518},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a11/}
}
TY  - JOUR
AU  - Konvalinka, Matjaž
AU  - Lauve, Aaron
TI  - Skew Pieri rules for Hall-Littlewood functions
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 499
EP  - 518
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a11/
LA  - en
ID  - JAC_2013__38_3_a11
ER  - 
%0 Journal Article
%A Konvalinka, Matjaž
%A Lauve, Aaron
%T Skew Pieri rules for Hall-Littlewood functions
%J Journal of Algebraic Combinatorics
%D 2013
%P 499-518
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a11/
%G en
%F JAC_2013__38_3_a11
Konvalinka, Matjaž; Lauve, Aaron. Skew Pieri rules for Hall-Littlewood functions. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 3, pp. 499-518. http://geodesic.mathdoc.fr/item/JAC_2013__38_3_a11/