Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 285-327.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce a generalization of the Robinson-Schensted-Knuth insertion algorithm for semi-standard augmented fillings whose basement is an arbitrary permutation $\sigma \in S _{ n }$. If $\sigma $ is the identity, then our insertion algorithm reduces to the insertion algorithm introduced by the second author (Sémin. Lothar. Comb. 57:B57e, 2006) for semi-standard augmented fillings and if $\sigma $ is the reverse of the identity, then our insertion algorithm reduces to the original Robinson-Schensted-Knuth row insertion algorithm. We use our generalized insertion algorithm to obtain new decompositions of the Schur functions into nonsymmetric elements called generalized Demazure atoms (which become Demazure atoms when $\sigma $ is the identity). Other applications include Pieri rules for multiplying a generalized Demazure atom by a complete homogeneous symmetric function or an elementary symmetric function, a generalization of Knuth's correspondence between matrices of non-negative integers and pairs of tableaux, and a version of evacuation for composition tableaux whose basement is an arbitrary permutation $\sigma $.
Keywords: symmetric functions, permutations, nonsymmetric macdonald polynomials, Demazure atoms, permuted basement fillings
@article{JAC_2013__38_2_a8,
     author = {Haglund, James and Mason, Sarah and Remmel, Jeffrey},
     title = {Properties of the nonsymmetric {Robinson-Schensted-Knuth} algorithm},
     journal = {Journal of Algebraic Combinatorics},
     pages = {285--327},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a8/}
}
TY  - JOUR
AU  - Haglund, James
AU  - Mason, Sarah
AU  - Remmel, Jeffrey
TI  - Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 285
EP  - 327
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a8/
LA  - en
ID  - JAC_2013__38_2_a8
ER  - 
%0 Journal Article
%A Haglund, James
%A Mason, Sarah
%A Remmel, Jeffrey
%T Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
%J Journal of Algebraic Combinatorics
%D 2013
%P 285-327
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a8/
%G en
%F JAC_2013__38_2_a8
Haglund, James; Mason, Sarah; Remmel, Jeffrey. Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 285-327. http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a8/