Tensor invariants for certain subgroups of the orthogonal group
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 393-405.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let V be an n-dimensional vector space, and let O $_{ n }$ be the orthogonal group. Motivated by a question of B. Szegedy (J. Am. Math. Soc. $20(4), 2007)$, about the rank of edge connection matrices of partition functions of vertex models, we give a combinatorial parameterization of tensors in V $^{\otimes k }$ invariant under certain subgroups of the orthogonal group. This allows us to give an answer to this question for vertex models with values in an algebraically closed field of characteristic zero.
Keywords: edge connection matrix, graph invariant, partition function, orthogonal group, tensor invariants, vertex model
@article{JAC_2013__38_2_a4,
     author = {Draisma, Jan and Regts, Guus},
     title = {Tensor invariants for certain subgroups of the orthogonal group},
     journal = {Journal of Algebraic Combinatorics},
     pages = {393--405},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a4/}
}
TY  - JOUR
AU  - Draisma, Jan
AU  - Regts, Guus
TI  - Tensor invariants for certain subgroups of the orthogonal group
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 393
EP  - 405
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a4/
LA  - en
ID  - JAC_2013__38_2_a4
ER  - 
%0 Journal Article
%A Draisma, Jan
%A Regts, Guus
%T Tensor invariants for certain subgroups of the orthogonal group
%J Journal of Algebraic Combinatorics
%D 2013
%P 393-405
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a4/
%G en
%F JAC_2013__38_2_a4
Draisma, Jan; Regts, Guus. Tensor invariants for certain subgroups of the orthogonal group. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 393-405. http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a4/