Alternative polarizations of Borel fixed ideals, Eliahou-Kervaire type resolution and discrete Morse theory
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 407-436.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We construct an Eliahou-Kervaire-like minimal free resolution of the alternative polarization $\operatorname{\mathsf{b-pol}}(I)$ of a Borel fixed ideal I. It yields new descriptions of the minimal free resolutions of I itself and I $^{ sq }$, where ( - )$^{ sq }$ is the squarefree operation in the shifting theory. These resolutions are cellular, and the (common) supporting cell complex is given by discrete Morse theory. If I is generated in one degree, our description is equivalent to that of Nagel and Reiner.
Keywords: Borel fixed ideal, squarefree strongly stable monomial ideal, Eliahou-Kervaire resolution, discrete Morse theory
@article{JAC_2013__38_2_a3,
     author = {Okazaki, Ryota and Yanagawa, Kohji},
     title = {Alternative polarizations of {Borel} fixed ideals, {Eliahou-Kervaire} type resolution and discrete {Morse} theory},
     journal = {Journal of Algebraic Combinatorics},
     pages = {407--436},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a3/}
}
TY  - JOUR
AU  - Okazaki, Ryota
AU  - Yanagawa, Kohji
TI  - Alternative polarizations of Borel fixed ideals, Eliahou-Kervaire type resolution and discrete Morse theory
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 407
EP  - 436
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a3/
LA  - en
ID  - JAC_2013__38_2_a3
ER  - 
%0 Journal Article
%A Okazaki, Ryota
%A Yanagawa, Kohji
%T Alternative polarizations of Borel fixed ideals, Eliahou-Kervaire type resolution and discrete Morse theory
%J Journal of Algebraic Combinatorics
%D 2013
%P 407-436
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a3/
%G en
%F JAC_2013__38_2_a3
Okazaki, Ryota; Yanagawa, Kohji. Alternative polarizations of Borel fixed ideals, Eliahou-Kervaire type resolution and discrete Morse theory. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 407-436. http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a3/