On $G$-arc-regular dihedrants and regular dihedral maps
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 437-455.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A graph $\Gamma $ is said to be G-arc-regular if a subgroup $G \le\operatorname{\mathsf{Aut}}(\varGamma)$ acts regularly on the arcs of $\Gamma $. In this paper connected G-arc-regular graphs are classified in the case when G contains a regular dihedral subgroup D $_{2n }$ of order 2n whose cyclic subgroup C $_{ n }\leq D _{2n }$ of index 2 is core-free in G. As an application, all regular Cayley maps over dihedral groups D $_{2n }$, n odd, are classified.
Keywords: G-arc-regular graph, Cayley graph, Cayley map, dihedral group
@article{JAC_2013__38_2_a2,
     author = {Kov\'acs, Istv\'an and Maru\v{s}i\v{c}, Dragan and Muzychuk, Mikhail},
     title = {On $G$-arc-regular dihedrants and regular dihedral maps},
     journal = {Journal of Algebraic Combinatorics},
     pages = {437--455},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a2/}
}
TY  - JOUR
AU  - Kovács, István
AU  - Marušič, Dragan
AU  - Muzychuk, Mikhail
TI  - On $G$-arc-regular dihedrants and regular dihedral maps
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 437
EP  - 455
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a2/
LA  - en
ID  - JAC_2013__38_2_a2
ER  - 
%0 Journal Article
%A Kovács, István
%A Marušič, Dragan
%A Muzychuk, Mikhail
%T On $G$-arc-regular dihedrants and regular dihedral maps
%J Journal of Algebraic Combinatorics
%D 2013
%P 437-455
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a2/
%G en
%F JAC_2013__38_2_a2
Kovács, István; Marušič, Dragan; Muzychuk, Mikhail. On $G$-arc-regular dihedrants and regular dihedral maps. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 437-455. http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a2/