The finite edge-primitive pentavalent graphs
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 491-497.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A graph is edge-primitive if its automorphism group acts primitively on edges. Weiss (in J. Comb. Theory Ser. B 15, 269-288, 1973) determined edge-primitive cubic graphs. In this paper, we classify edge-primitive pentavalent graphs. The same classification of those of valency 4 is also done.
Keywords: edge-primitive graph, symmetric graph, s-transitive graph
@article{JAC_2013__38_2_a0,
     author = {Guo, Song-Tao and Feng, Yan-Quan and Li, Cai Heng},
     title = {The finite edge-primitive pentavalent graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {491--497},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a0/}
}
TY  - JOUR
AU  - Guo, Song-Tao
AU  - Feng, Yan-Quan
AU  - Li, Cai Heng
TI  - The finite edge-primitive pentavalent graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 491
EP  - 497
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a0/
LA  - en
ID  - JAC_2013__38_2_a0
ER  - 
%0 Journal Article
%A Guo, Song-Tao
%A Feng, Yan-Quan
%A Li, Cai Heng
%T The finite edge-primitive pentavalent graphs
%J Journal of Algebraic Combinatorics
%D 2013
%P 491-497
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a0/
%G en
%F JAC_2013__38_2_a0
Guo, Song-Tao; Feng, Yan-Quan; Li, Cai Heng. The finite edge-primitive pentavalent graphs. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 2, pp. 491-497. http://geodesic.mathdoc.fr/item/JAC_2013__38_2_a0/