Simplicial complexes of triangular Ferrers boards
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the simplicial complex that arises from non-attacking rook placements on a subclass of Ferrers boards that have a $_{ i }$ rows of length i where a $_{ i }$>0 and i$\leq n$ for some positive integer n. In particular, we will investigate enumerative properties of their facets, their homotopy type, and homology.
Keywords: rooks, simplicial complex, homology, discrete Morse theory, homotopy, Stirling numbers
@article{JAC_2013__38_1_a11,
     author = {Clark, Eric and Zeckner, Matthew},
     title = {Simplicial complexes of triangular {Ferrers} boards},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a11/}
}
TY  - JOUR
AU  - Clark, Eric
AU  - Zeckner, Matthew
TI  - Simplicial complexes of triangular Ferrers boards
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 1
EP  - 14
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a11/
LA  - en
ID  - JAC_2013__38_1_a11
ER  - 
%0 Journal Article
%A Clark, Eric
%A Zeckner, Matthew
%T Simplicial complexes of triangular Ferrers boards
%J Journal of Algebraic Combinatorics
%D 2013
%P 1-14
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a11/
%G en
%F JAC_2013__38_1_a11
Clark, Eric; Zeckner, Matthew. Simplicial complexes of triangular Ferrers boards. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a11/