On the permutation groups of cyclic codes
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 1, pp. 197-208.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We classify the permutation groups of cyclic codes over a finite field. As a special case, we find the permutation groups of non-primitive BCH codes of prime length. In addition, the Sylow p-subgroup of the permutation group is given for many cyclic codes of length p $^{ m }$. Several examples are given to illustrate the results.
Keywords: permutation groups, transitive groups, doubly transitive groups, non-primitive BCH codes
@article{JAC_2013__38_1_a1,
     author = {Guenda, Kenza and Gulliver, T.Aaron},
     title = {On the permutation groups of cyclic codes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a1/}
}
TY  - JOUR
AU  - Guenda, Kenza
AU  - Gulliver, T.Aaron
TI  - On the permutation groups of cyclic codes
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 197
EP  - 208
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a1/
LA  - en
ID  - JAC_2013__38_1_a1
ER  - 
%0 Journal Article
%A Guenda, Kenza
%A Gulliver, T.Aaron
%T On the permutation groups of cyclic codes
%J Journal of Algebraic Combinatorics
%D 2013
%P 197-208
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a1/
%G en
%F JAC_2013__38_1_a1
Guenda, Kenza; Gulliver, T.Aaron. On the permutation groups of cyclic codes. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 1, pp. 197-208. http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a1/