Cayley cages
Journal of Algebraic Combinatorics, Tome 38 (2013) no. 1, pp. 209-224.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A (k,g)-Cayley cage is a k-regular Cayley graph of girth g and smallest possible order. We present an explicit construction of (k,g)-Cayley graphs for all parameters k$\geq 2$ and g$\geq 3$ and generalize this construction to show that many well-known small k-regular graphs of girth g can be constructed in this way. We also establish connections between this construction and topological graph theory, and address the question of the order of (k,g)-Cayley cages.
Keywords: cage, Cayley graph, girth
@article{JAC_2013__38_1_a0,
     author = {Exoo, Geoffrey and Jajcay, Robert and \v{S}ir\'a\v{n}, Jozef},
     title = {Cayley cages},
     journal = {Journal of Algebraic Combinatorics},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a0/}
}
TY  - JOUR
AU  - Exoo, Geoffrey
AU  - Jajcay, Robert
AU  - Širáň, Jozef
TI  - Cayley cages
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 209
EP  - 224
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a0/
LA  - en
ID  - JAC_2013__38_1_a0
ER  - 
%0 Journal Article
%A Exoo, Geoffrey
%A Jajcay, Robert
%A Širáň, Jozef
%T Cayley cages
%J Journal of Algebraic Combinatorics
%D 2013
%P 209-224
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a0/
%G en
%F JAC_2013__38_1_a0
Exoo, Geoffrey; Jajcay, Robert; Širáň, Jozef. Cayley cages. Journal of Algebraic Combinatorics, Tome 38 (2013) no. 1, pp. 209-224. http://geodesic.mathdoc.fr/item/JAC_2013__38_1_a0/