On a class of wreath products of hypergroups and association schemes.
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 601-619.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We characterize finite hypergroups S (in the sense of Frédéric Marty in Huitième Congres des Mathématiciens, pp. 45-59, 1934) satisfying |pq|=1 for any two elements p and q in S with p$\neq q ^{\ast }$ in terms of wreath products. The result applies to association schemes of finite valency and provides a corresponding characterization in scheme theory. For association schemes S of finite valency satisfying the above condition, we provide a second characterization, a characterization in terms of the subconstituent algebra of S.
Keywords: groups, association schemes, hypergroups, wreath products, subconstituent algebras
@article{JAC_2013__37_4_a8,
     author = {Tanaka, Rie and Zieschang, Paul-Hermann},
     title = {On a class of wreath products of hypergroups and association schemes.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {601--619},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a8/}
}
TY  - JOUR
AU  - Tanaka, Rie
AU  - Zieschang, Paul-Hermann
TI  - On a class of wreath products of hypergroups and association schemes.
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 601
EP  - 619
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a8/
LA  - en
ID  - JAC_2013__37_4_a8
ER  - 
%0 Journal Article
%A Tanaka, Rie
%A Zieschang, Paul-Hermann
%T On a class of wreath products of hypergroups and association schemes.
%J Journal of Algebraic Combinatorics
%D 2013
%P 601-619
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a8/
%G en
%F JAC_2013__37_4_a8
Tanaka, Rie; Zieschang, Paul-Hermann. On a class of wreath products of hypergroups and association schemes.. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 601-619. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a8/