The topology of restricted partition posets
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 643-666.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For each composition $\vec {c}$ we show that the order complex of the poset of pointed set partitions $\varPi^{\bullet}_{\vec {c}}$ is a wedge of spheres of the same dimension with the multiplicity given by the number of permutations with descent composition $\vec {c}$ . Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module S $^{ B }$ where B is a border strip associated to the composition. We also study the filter of pointed set partitions generated by a knapsack integer partition and show the analogous results on homotopy type and action on the top homology.
Keywords: border strip Specht module, complex of ordered set partitions, descent set statistics, knapsack integer partitions, poset of pointed set partitions
@article{JAC_2013__37_4_a6,
     author = {Ehrenborg, Richard and Jung, JiYoon},
     title = {The topology of restricted partition posets},
     journal = {Journal of Algebraic Combinatorics},
     pages = {643--666},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a6/}
}
TY  - JOUR
AU  - Ehrenborg, Richard
AU  - Jung, JiYoon
TI  - The topology of restricted partition posets
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 643
EP  - 666
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a6/
LA  - en
ID  - JAC_2013__37_4_a6
ER  - 
%0 Journal Article
%A Ehrenborg, Richard
%A Jung, JiYoon
%T The topology of restricted partition posets
%J Journal of Algebraic Combinatorics
%D 2013
%P 643-666
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a6/
%G en
%F JAC_2013__37_4_a6
Ehrenborg, Richard; Jung, JiYoon. The topology of restricted partition posets. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 643-666. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a6/