Betti numbers of Stanley-Reisner rings determine hierarchical Markov degrees
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 667-682.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: There are two seemingly unrelated ideals associated with a simplicial complex $\Delta $: one is the Stanley-Reisner ideal I $_{ \Delta }$, the monomial ideal generated by minimal non-faces of $\Delta $, well-known in combinatorial commutative algebra; the other is the toric ideal I $_{ M(\Delta )}$ of the facet subring of $\Delta $, whose generators give a Markov basis for the hierarchical model defined by $\Delta $, playing a prominent role in algebraic statistics. In this note we show that the complexity of the generators of I $_{ M(\Delta )}$ is determined by the Betti numbers of I $_{ \Delta }$. The unexpected connection between the syzygies of the Stanley-Reisner ideal and degrees of minimal generators of the toric ideal provide a framework for further exploration of the connection between the model and its many relatives in algebra and combinatorics.
Keywords: Stanley-resiner ideal, Betti numbers, Markov basis, Markov width, toric ideal generators
@article{JAC_2013__37_4_a5,
     author = {Petrovi\'c, Sonja and Stokes, Erik},
     title = {Betti numbers of {Stanley-Reisner} rings determine hierarchical {Markov} degrees},
     journal = {Journal of Algebraic Combinatorics},
     pages = {667--682},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a5/}
}
TY  - JOUR
AU  - Petrović, Sonja
AU  - Stokes, Erik
TI  - Betti numbers of Stanley-Reisner rings determine hierarchical Markov degrees
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 667
EP  - 682
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a5/
LA  - en
ID  - JAC_2013__37_4_a5
ER  - 
%0 Journal Article
%A Petrović, Sonja
%A Stokes, Erik
%T Betti numbers of Stanley-Reisner rings determine hierarchical Markov degrees
%J Journal of Algebraic Combinatorics
%D 2013
%P 667-682
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a5/
%G en
%F JAC_2013__37_4_a5
Petrović, Sonja; Stokes, Erik. Betti numbers of Stanley-Reisner rings determine hierarchical Markov degrees. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 667-682. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a5/