A new "dinv" arising from the two part case of the shuffle conjecture
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 683-715.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a symmetric function F, the eigen-operator $\Delta _{ F }$ acts on the modified Macdonald basis of the ring of symmetric functions by $\Delta_{F} \tilde{H}_{\mu}= F[B_{\mu}] \tilde{H}_{\mu}$ . In a recent paper (Int. Math. Res. Not. 11:525-560, 2004), J. Haglund showed that the expression $\langle\Delta_{h_{J}} E_{n,k}, e_{n}\rangle$ q,t-enumerates the parking functions whose diagonal word is in the shuffle $12 \dots J\cup \cup $J+$1 \dots $J+n with k of the cars J+1,$\cdots $,J+n in the main diagonal including car J+n in the cell (1,1) by t $^{area}$ q $^{dinv}$. In view of some recent conjectures of Haglund-Morse-Zabrocki (Can. J. Math., doi:10.4153/CJM-2011-078-4, 2011), it is natural to conjecture that replacing E $_{ n,k }$ by the modified Hall-Littlewood functions $\mathbf{C}_{p_{1}}\mathbf{C}_{p_{2}}\cdots\mathbf{C}_{p_{k}} 1$ would yield a polynomial that enumerates the same collection of parking functions but now restricted by the requirement that the Dyck path supporting the parking function touches the diagonal according to the composition p=(p $_{1}$,p $_{2},\cdots $,p $_{ k }$). We prove this conjecture by deriving a recursion for the polynomial $\langle\Delta_{h_{J}} \mathbf{C}_{p_{1}}\mathbf{C}_{p_{2}}\cdots \mathbf{C}_{p_{k}} 1 , e_{n}\rangle $ , using this recursion to construct a new $\operatorname{dinv}$ statistic (which we denote $\operatorname{ndinv}$ ), then showing that this polynomial enumerates the latter parking functions by $t^{\operatorname{area}} q^{\operatorname{ndinv}}$ .
Keywords: symmetric functions, macdonald polynomials, parking functions
@article{JAC_2013__37_4_a4,
     author = {Duane, A. and Garsia, A.M. and Zabrocki, M.},
     title = {A new "dinv" arising from the two part case of the shuffle conjecture},
     journal = {Journal of Algebraic Combinatorics},
     pages = {683--715},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a4/}
}
TY  - JOUR
AU  - Duane, A.
AU  - Garsia, A.M.
AU  - Zabrocki, M.
TI  - A new "dinv" arising from the two part case of the shuffle conjecture
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 683
EP  - 715
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a4/
LA  - en
ID  - JAC_2013__37_4_a4
ER  - 
%0 Journal Article
%A Duane, A.
%A Garsia, A.M.
%A Zabrocki, M.
%T A new "dinv" arising from the two part case of the shuffle conjecture
%J Journal of Algebraic Combinatorics
%D 2013
%P 683-715
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a4/
%G en
%F JAC_2013__37_4_a4
Duane, A.; Garsia, A.M.; Zabrocki, M. A new "dinv" arising from the two part case of the shuffle conjecture. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 683-715. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a4/