Monomials, binomials and Riemann-Roch
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 737-756.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Riemann-Roch theorem on a graph G is related to Alexander duality in combinatorial commutative algebra. We study the lattice ideal given by chip firing on G and the initial ideal whose standard monomials are the G-parking functions. When G is a saturated graph, these ideals are generic and the Scarf complex is a minimal free resolution. Otherwise, syzygies are obtained by degeneration. We also develop a self-contained Riemann-Roch theory for Artinian monomial ideals.
Keywords: Riemann-Roch theory for graphs, combinatorial commutative algebra, chip firing games, Laplacian matrix of a graph, lattice ideals and their Betti numbers, Alexander duality of monomial ideals, scarf complex
@article{JAC_2013__37_4_a2,
     author = {Manjunath, Madhusudan and Sturmfels, Bernd},
     title = {Monomials, binomials and {Riemann-Roch}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {737--756},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a2/}
}
TY  - JOUR
AU  - Manjunath, Madhusudan
AU  - Sturmfels, Bernd
TI  - Monomials, binomials and Riemann-Roch
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 737
EP  - 756
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a2/
LA  - en
ID  - JAC_2013__37_4_a2
ER  - 
%0 Journal Article
%A Manjunath, Madhusudan
%A Sturmfels, Bernd
%T Monomials, binomials and Riemann-Roch
%J Journal of Algebraic Combinatorics
%D 2013
%P 737-756
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a2/
%G en
%F JAC_2013__37_4_a2
Manjunath, Madhusudan; Sturmfels, Bernd. Monomials, binomials and Riemann-Roch. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 737-756. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a2/