Gérard-Levelt membranes
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 757-776.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present an unexpected application of tropical convexity to the determination of invariants for linear systems of differential equations. We show that the classical Gérard-Levelt lattice saturation procedure can be geometrically understood in terms of a projection on the tropical linear space attached to a subset of the local affine Bruhat-Tits building, which we call the Gérard-Levelt membrane. This provides a way to compute the true Poincaré rank, but also the Katz rank of a meromorphic connection without having to perform either gauge transforms or ramifications of the variable. We finally present an efficient algorithm to compute this tropical projection map, generalising Ardila's method for Bergman fans to the case of the tight-span of a valuated matroid.
Keywords: meromorphic connections, tropical convexity, valuated matroids
@article{JAC_2013__37_4_a1,
     author = {Corel, Eduardo},
     title = {G\'erard-Levelt membranes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {757--776},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a1/}
}
TY  - JOUR
AU  - Corel, Eduardo
TI  - Gérard-Levelt membranes
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 757
EP  - 776
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a1/
LA  - en
ID  - JAC_2013__37_4_a1
ER  - 
%0 Journal Article
%A Corel, Eduardo
%T Gérard-Levelt membranes
%J Journal of Algebraic Combinatorics
%D 2013
%P 757-776
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a1/
%G en
%F JAC_2013__37_4_a1
Corel, Eduardo. Gérard-Levelt membranes. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 757-776. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a1/