The odd Littlewood-Richardson rule
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 777-799.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In previous work with Mikhail Khovanov and Aaron Lauda we introduced two odd analogues of the Schur functions: one via the combinatorics of Young tableaux (odd Kostka numbers) and one via an odd symmetrization operator. In this paper we introduce a third analogue, the plactic Schur functions. We show they coincide with both previously defined types of Schur function, confirming a conjecture. Using the plactic definition, we establish an odd Littlewood-Richardson rule. We also re-cast this rule in the language of polytopes, via the Knutson-Tao hive model.
Keywords: symmetric functions, Hopf algebras, supalgebra, odd symmetric functions, hives, Littlewood-Richardson, Schubert calculus
@article{JAC_2013__37_4_a0,
     author = {Ellis, Alexander P.},
     title = {The odd {Littlewood-Richardson} rule},
     journal = {Journal of Algebraic Combinatorics},
     pages = {777--799},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a0/}
}
TY  - JOUR
AU  - Ellis, Alexander P.
TI  - The odd Littlewood-Richardson rule
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 777
EP  - 799
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a0/
LA  - en
ID  - JAC_2013__37_4_a0
ER  - 
%0 Journal Article
%A Ellis, Alexander P.
%T The odd Littlewood-Richardson rule
%J Journal of Algebraic Combinatorics
%D 2013
%P 777-799
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a0/
%G en
%F JAC_2013__37_4_a0
Ellis, Alexander P. The odd Littlewood-Richardson rule. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 4, pp. 777-799. http://geodesic.mathdoc.fr/item/JAC_2013__37_4_a0/