Jucys-Murphy elements and a presentation for partition algebras
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 3, pp. 401-454.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a new presentation for the partition algebras. This presentation was discovered in the course of establishing an inductive formula for the partition algebra Jucys-Murphy elements defined by Halverson and Ram (Eur. J. Comb. 26:869-921, 2005). Using Schur-Weyl duality we show that our recursive formula and the original definition of Jucys-Murphy elements given by Halverson and Ram are equivalent. The new presentation and inductive formula for the partition algebra Jucys-Murphy elements given in this paper are used to construct the seminormal representations for the partition algebras in a separate paper.
Keywords: partition algebras, jucys-murphy elements, central elements, presentation
@article{JAC_2013__37_3_a5,
     author = {Enyang, John},
     title = {Jucys-Murphy elements and a presentation for partition algebras},
     journal = {Journal of Algebraic Combinatorics},
     pages = {401--454},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a5/}
}
TY  - JOUR
AU  - Enyang, John
TI  - Jucys-Murphy elements and a presentation for partition algebras
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 401
EP  - 454
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a5/
LA  - en
ID  - JAC_2013__37_3_a5
ER  - 
%0 Journal Article
%A Enyang, John
%T Jucys-Murphy elements and a presentation for partition algebras
%J Journal of Algebraic Combinatorics
%D 2013
%P 401-454
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a5/
%G en
%F JAC_2013__37_3_a5
Enyang, John. Jucys-Murphy elements and a presentation for partition algebras. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 3, pp. 401-454. http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a5/