Deformations of permutation representations of Coxeter groups.
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 3, pp. 455-502.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The permutation representation afforded by a Coxeter group W acting on the cosets of a standard parabolic subgroup inherits many nice properties from W such as a shellable Bruhat order and a flat deformation over $\Bbb $Z[q] to a representation of the corresponding Hecke algebra. In this paper we define a larger class of "quasiparabolic" subgroups (more generally, quasiparabolic W-sets), and show that they also inherit these properties. Our motivating example is the action of the symmetric group on fixed-point-free involutions by conjugation.
Keywords: Coxeter group, permutation representation, Hecke algebra, Bruhat order
@article{JAC_2013__37_3_a4,
     author = {Rains, Eric M. and Vazirani, Monica J.},
     title = {Deformations of permutation representations of {Coxeter} groups.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {455--502},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a4/}
}
TY  - JOUR
AU  - Rains, Eric M.
AU  - Vazirani, Monica J.
TI  - Deformations of permutation representations of Coxeter groups.
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 455
EP  - 502
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a4/
LA  - en
ID  - JAC_2013__37_3_a4
ER  - 
%0 Journal Article
%A Rains, Eric M.
%A Vazirani, Monica J.
%T Deformations of permutation representations of Coxeter groups.
%J Journal of Algebraic Combinatorics
%D 2013
%P 455-502
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a4/
%G en
%F JAC_2013__37_3_a4
Rains, Eric M.; Vazirani, Monica J. Deformations of permutation representations of Coxeter groups.. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 3, pp. 455-502. http://geodesic.mathdoc.fr/item/JAC_2013__37_3_a4/