The reducible Specht modules for the Hecke algebra $\mathcal H_{\mathbb C,-1}(\mathfrak S_n)$.
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 201-241.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The reducible Specht modules for the Hecke algebra $\mathcal {H}_{\mathbb{F},q}(\mathfrak{S}_{n})$ have been classified except when q= - 1. We prove one half of a conjecture which we believe classifies the reducible Specht modules when q= - 1.
Keywords: Hecke algebras, Specht modules, homomorphisms
@article{JAC_2013__37_2_a8,
     author = {Fayers, Matthew and Lyle, Sin\'ead},
     title = {The reducible {Specht} modules for the {Hecke} algebra $\mathcal H_{\mathbb C,-1}(\mathfrak S_n)$.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {201--241},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a8/}
}
TY  - JOUR
AU  - Fayers, Matthew
AU  - Lyle, Sinéad
TI  - The reducible Specht modules for the Hecke algebra $\mathcal H_{\mathbb C,-1}(\mathfrak S_n)$.
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 201
EP  - 241
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a8/
LA  - en
ID  - JAC_2013__37_2_a8
ER  - 
%0 Journal Article
%A Fayers, Matthew
%A Lyle, Sinéad
%T The reducible Specht modules for the Hecke algebra $\mathcal H_{\mathbb C,-1}(\mathfrak S_n)$.
%J Journal of Algebraic Combinatorics
%D 2013
%P 201-241
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a8/
%G en
%F JAC_2013__37_2_a8
Fayers, Matthew; Lyle, Sinéad. The reducible Specht modules for the Hecke algebra $\mathcal H_{\mathbb C,-1}(\mathfrak S_n)$.. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 201-241. http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a8/