Topological representations of matroid maps
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 265-287.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Topological Representation Theorem for (oriented) matroids states that every (oriented) matroid arises from the intersection lattice of an arrangement of codimension one homotopy spheres on a homotopy sphere. In this paper, we use a construction of Engström to show that structure-preserving maps between matroids induce topological mappings between their representations; a result previously known only in the oriented case. Specifically, we show that weak maps induce continuous maps and that this process is a functor from the category of matroids with weak maps to the homotopy category of topological spaces. We also give a new and conceptual proof of a result regarding the Whitney numbers of the first kind of a matroid.
Keywords: matroids, diagrams of spaces, homotopy colimits, Whitney numbers
@article{JAC_2013__37_2_a5,
     author = {Stamps, Matthew T.},
     title = {Topological representations of matroid maps},
     journal = {Journal of Algebraic Combinatorics},
     pages = {265--287},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a5/}
}
TY  - JOUR
AU  - Stamps, Matthew T.
TI  - Topological representations of matroid maps
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 265
EP  - 287
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a5/
LA  - en
ID  - JAC_2013__37_2_a5
ER  - 
%0 Journal Article
%A Stamps, Matthew T.
%T Topological representations of matroid maps
%J Journal of Algebraic Combinatorics
%D 2013
%P 265-287
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a5/
%G en
%F JAC_2013__37_2_a5
Stamps, Matthew T. Topological representations of matroid maps. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 265-287. http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a5/