Tropical hyperelliptic curves
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 331-359.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the locus of tropical hyperelliptic curves inside the moduli space of tropical curves of genus g. We define a harmonic morphism of metric graphs and prove that a metric graph is hyperelliptic if and only if it admits a harmonic morphism of degree 2 to a metric tree. This generalizes the work of Baker and Norine on combinatorial graphs to the metric case. We then prove that the locus of 2-edge-connected genus g tropical hyperelliptic curves is a (2g - 1)-dimensional stacky polyhedral fan whose maximal cells are in bijection with trees on g - 1 vertices with maximum valence 3. Finally, we show that the Berkovich skeleton of a classical hyperelliptic plane curve satisfying a certain tropical smoothness condition is a standard ladder of genus g.
Keywords: tropical geometry, tropical curves, hyperelliptic curves, metric graphs, harmonic morphisms
@article{JAC_2013__37_2_a2,
     author = {Chan, Melody},
     title = {Tropical hyperelliptic curves},
     journal = {Journal of Algebraic Combinatorics},
     pages = {331--359},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a2/}
}
TY  - JOUR
AU  - Chan, Melody
TI  - Tropical hyperelliptic curves
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 331
EP  - 359
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a2/
LA  - en
ID  - JAC_2013__37_2_a2
ER  - 
%0 Journal Article
%A Chan, Melody
%T Tropical hyperelliptic curves
%J Journal of Algebraic Combinatorics
%D 2013
%P 331-359
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a2/
%G en
%F JAC_2013__37_2_a2
Chan, Melody. Tropical hyperelliptic curves. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 331-359. http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a2/