The number of flags in finite vector spaces: asymptotic normality and Mahonian statistics
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 361-380.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the generalized Galois numbers which count flags of length r in N-dimensional vector spaces over finite fields. We prove that the coefficients of those polynomials are asymptotically Gaussian normally distributed as N becomes large. Furthermore, we interpret the generalized Galois numbers as weighted inversion statistics on the descent classes of the symmetric group on N elements and identify their asymptotic limit as the Mahonian inversion statistic when r approaches $\infty $. Finally, we apply our statements to derive further statistical aspects of generalized Rogers-Szegő polynomials, reinterpret the asymptotic behavior of linear q-ary codes and characters of the symmetric group acting on subspaces over finite fields, and discuss implications for affine Demazure modules and joint probability generating functions of descent-inversion statistics.
Keywords: Galois number, Gaussian normal distribution, macmahon inversion statistic, Rogers-Szegő polynomial, linear code, Demazure module, symmetric group, descent-inversion statistic
@article{JAC_2013__37_2_a1,
     author = {Bliem, Thomas and Kousidis, Stavros},
     title = {The number of flags in finite vector spaces: asymptotic normality and {Mahonian} statistics},
     journal = {Journal of Algebraic Combinatorics},
     pages = {361--380},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a1/}
}
TY  - JOUR
AU  - Bliem, Thomas
AU  - Kousidis, Stavros
TI  - The number of flags in finite vector spaces: asymptotic normality and Mahonian statistics
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 361
EP  - 380
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a1/
LA  - en
ID  - JAC_2013__37_2_a1
ER  - 
%0 Journal Article
%A Bliem, Thomas
%A Kousidis, Stavros
%T The number of flags in finite vector spaces: asymptotic normality and Mahonian statistics
%J Journal of Algebraic Combinatorics
%D 2013
%P 361-380
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a1/
%G en
%F JAC_2013__37_2_a1
Bliem, Thomas; Kousidis, Stavros. The number of flags in finite vector spaces: asymptotic normality and Mahonian statistics. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 2, pp. 361-380. http://geodesic.mathdoc.fr/item/JAC_2013__37_2_a1/