Affine stratifications from finite misère quotients.
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a morphism from an affine semigroup to an arbitrary commutative monoid, it is shown that every fiber possesses an affine stratification: a partition into a finite disjoint union of translates of normal affine semigroups. The proof rests on mesoprimary decomposition of monoid congruences and a novel list of equivalent conditions characterizing the existence of an affine stratification. The motivating consequence of the main result is a special case of a conjecture due to Guo and the author on the existence of affine stratifications for (the set of winning positions of) any lattice game. The special case proved here assumes that the lattice game has finite misère quotient, in the sense of Plambeck and Siegel.
Keywords: affine semigroup, lattice game, mesodecomposition, misère quotient, monoid
@article{JAC_2013__37_1_a8,
     author = {Miller, Ezra},
     title = {Affine stratifications from finite mis\`ere quotients.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a8/}
}
TY  - JOUR
AU  - Miller, Ezra
TI  - Affine stratifications from finite misère quotients.
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 1
EP  - 9
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a8/
LA  - en
ID  - JAC_2013__37_1_a8
ER  - 
%0 Journal Article
%A Miller, Ezra
%T Affine stratifications from finite misère quotients.
%J Journal of Algebraic Combinatorics
%D 2013
%P 1-9
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a8/
%G en
%F JAC_2013__37_1_a8
Miller, Ezra. Affine stratifications from finite misère quotients.. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a8/