Generalizing Tanisaki's ideal via ideals of truncated symmetric functions
Journal of Algebraic Combinatorics, Tome 37 (2013) no. 1, pp. 167-199.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define a family of ideals I $_{ h }$ in the polynomial ring $\Bbb $Z[x $_{1},\cdots $,x $_{ n }$] that are parameterized by Hessenberg functions h (equivalently Dyck paths or ample partitions). The ideals I $_{ h }$ generalize algebraically a family of ideals called the Tanisaki ideal, which is used in a geometric construction of permutation representations called Springer theory. To define I $_{ h }$, we use polynomials in a proper subset of the variables x $_{1},\cdots $,x $_{ n }}$ that are symmetric under the corresponding permutation subgroup. We call these polynomials truncated symmetric functions and show combinatorial identities relating different kinds of truncated symmetric polynomials. We then prove several key properties of I $_{ h }$, including that if h>h$^{\prime}$ in the natural partial order on Dyck paths, then I $\_{ h }\subset I \_{ h$^prime, and explicitly construct a Gröbner basis for I $\_{ h }$. We use a second family of ideals J $\_{ h }$ for which some of the claims are easier to see and prove that I $\_{ h }=J \_{ h }$. The ideals J $\_{ h }$ arise in work of Ding, Develin-Martin-Reiner, and Gasharov-Reiner on a family of Schubert varieties called partition varieties. Using earlier work of the first author, the current manuscript proves that the ideals I $\_{ h }=J \_{ h }$ generalize the Tanisaki ideals both algebraically and geometrically, from Springer varieties to a family of nilpotent Hessenberg varieties.
Keywords: symmetric functions, tanisaki ideal, Springer variety, Hessenberg variety, Gröbner basis
@article{JAC_2013__37_1_a0,
     author = {Mbirika, Aba and Tymoczko, Julianna},
     title = {Generalizing {Tanisaki's} ideal via ideals of truncated symmetric functions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {167--199},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a0/}
}
TY  - JOUR
AU  - Mbirika, Aba
AU  - Tymoczko, Julianna
TI  - Generalizing Tanisaki's ideal via ideals of truncated symmetric functions
JO  - Journal of Algebraic Combinatorics
PY  - 2013
SP  - 167
EP  - 199
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a0/
LA  - en
ID  - JAC_2013__37_1_a0
ER  - 
%0 Journal Article
%A Mbirika, Aba
%A Tymoczko, Julianna
%T Generalizing Tanisaki's ideal via ideals of truncated symmetric functions
%J Journal of Algebraic Combinatorics
%D 2013
%P 167-199
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a0/
%G en
%F JAC_2013__37_1_a0
Mbirika, Aba; Tymoczko, Julianna. Generalizing Tanisaki's ideal via ideals of truncated symmetric functions. Journal of Algebraic Combinatorics, Tome 37 (2013) no. 1, pp. 167-199. http://geodesic.mathdoc.fr/item/JAC_2013__37_1_a0/