Arithmetics of 2-friezes
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 4, pp. 515-539.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the variant of Coxeter-Conway frieze patterns called 2-frieze. We prove that there exist infinitely many closed integral 2-friezes (i.e. containing only positive integers) provided the width of the array is bigger than 4. We introduce operations on the integral 2-friezes generating bigger or smaller closed integral 2-friezes.
Keywords: frieze, Coxeter-Conway frieze, cluster algebra, Laurent phenomenon
@article{JAC_2012__36_4_a5,
     author = {Morier-Genoud, Sophie},
     title = {Arithmetics of 2-friezes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {515--539},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a5/}
}
TY  - JOUR
AU  - Morier-Genoud, Sophie
TI  - Arithmetics of 2-friezes
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 515
EP  - 539
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a5/
LA  - en
ID  - JAC_2012__36_4_a5
ER  - 
%0 Journal Article
%A Morier-Genoud, Sophie
%T Arithmetics of 2-friezes
%J Journal of Algebraic Combinatorics
%D 2012
%P 515-539
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a5/
%G en
%F JAC_2012__36_4_a5
Morier-Genoud, Sophie. Arithmetics of 2-friezes. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 4, pp. 515-539. http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a5/